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Abstract

Moving object detection has been a central topic
of discussion in computer vision for its wide range
of applications like in self-driving cars, video surveil-
lance, security, and enforcement. Neuromorphic Vision
Sensors (NVS) are bio-inspired sensors that mimic the
working of the human eye. Unlike conventional frame-
based cameras, these sensors capture a stream of asyn-
chronous ‘events’ that pose multiple advantages over the
former, like high dynamic range, low latency, low power
consumption, and reduced motion blur. However, these
advantages come at a high cost, as the event camera
data typically contains more noise and has low resolu-
tion. Moreover, as event-based cameras can only cap-
ture the relative changes in brightness of a scene, event
data do not contain usual visual information (like tex-
ture and color) as available in video data from nor-
mal cameras. So, moving object detection in event-
based cameras becomes an extremely challenging task.
In this paper, we present an unsupervised Graph Spec-
tral Clustering technique for Moving Object Detection
in Event-based data (GSCEventMOD). We additionally
show how the optimum number of moving objects can
be automatically determined. Experimental compar-
isons on publicly available datasets show that the pro-
posed GSCEventMOD algorithm outperforms a number
of state-of-the-art techniques by a maximum margin of
30%.

1. Introduction
Recent developments in materials engineering, fab-

rication technology, VLSI (very-large-scale-integration)
design techniques, and neuro-science have facilitated

*Authors have equal contributions.

the newly discovered concept of bio-inspired visual sen-
sors and processors [4]. Event-based cameras are such
neuromorphic bio-inspired visual sensors that mimic
the mode of action of a biological retina, bringing a
paradigm shift in computer vision technology [4]. One
of the earliest contributions to put the concept of event-
based cameras in action was made by Lichtsteiner et
al. [19], where they developed an event-based neuro-
morphic sensor based on biological principles. These
bio-inspired cameras capture a stream of asynchronous
events in contrast to the traditional RGB cameras which
acquire images at a fixed-frame rate as specified by an
external clock [8]. In event cameras, each pixel mem-
orizes the log intensity each time an event is sent and
incessantly monitors for a sufficient change in magni-
tude from this memorized value. When this change
crosses a threshold value, an event is recorded by the
camera, which is then transmitted by the sensor in form
of its location {x, y}, its timestamp t (in microseconds),
and its polarity p (i.e., whether the pixel had become
brighter or darker). In Fig. 1, we illustrate how an event
camera works following [8]. In event-based cameras,
sensors capture the per-pixel brightness changes (called
events) asynchronously instead of measuring the abso-
lute brightness of all pixels at a constant rate. As a result,
traditional vision algorithms designed to process video
data from frame-based cameras often become unsuitable
for processing event data.

Moving object detection is an important task in the
field of computer vision which appears in autonomous
vehicles, surveillance systems and alike. In moving ob-
ject detection, we identify the physical movement of
an object in a given region or area [18]. However,
event-based moving object detection systems are far
inferior to their frame-based counterparts [30, 1], be-
cause only a limited amount of reliable labels are avail-
able for training [3]. In fact, this limitation restricts
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Figure 1: Visualization of the output from a neuromorphic vision sensor and a standard frame-based camera when
facing a rotating disk with a black dot. Inspired by [8]
.

the use of deep learning in solving motion detection
problems (from event data). Moving object detection
in event-based cameras becomes further challenging as
event cameras can only capture the relative changes in
brightness of a scene and not usual visual features like
color and texture [29]. Recently few attempts have been
made to extend the task of moving object detection in
neuromorphic vision, either by using parametric mod-
els [29, 11] or by using traditional clustering algorithms
[24, 12, 5]. Unfortunately, those parametric models are
complex and require several assumptions to hold for
their proper working. Furthermore, traditional cluster-
ing algorithms are sensitive to noise generated from the
motion of the objects and sensor defects (temporal and
shot noise) [4]. Widespread use of graph-based rep-
resentations have been noticed in recent computer vi-
sion and machine learning applications[10, 9, 40]. In
some cases (like financial and banking data, social net-
works, mobility and traffic patterns, marketing prefer-
ences, fads, etc.), the data resides on irregular and com-
plex structures, which can be efficiently tackled with
graph-based methods [27]. Note that neuromorphic-
based sensors activate asynchronously in time. So, the
data streams are produced at irregular space-time co-
ordinates which depends upon the scene activity [3].
Therefore, by representing the events as graphs, one can
maintain the event asynchronicity and sparsity and ex-
ploit their advantages [3].

Our method improves the previous works [29, 5, 12]
in multiple ways. Firstly, we do not need any prior
knowledge about the actual number of moving objects
in a scene. Secondly, our model is successful in detect-
ing the moving objects from the noisy event data. We
construct a similarity graph using k-Nearest Neighbors

(k-NN). Then, graph spectral clustering is applied for
detecting the moving objects. Our contributions can be
summarized as follows:
• We introduce graph-spectral clustering [21, 20, 39, 25,

28] for detecting moving objects in event data. We use
this method because it can handle clusters of arbitrary
(including non-convex) shapes and it does not make
any prior assumptions about the cluster shapes [22].

• We show, using silhouette analysis [36], how the ac-
tual number of moving objects in the event-based data
can be automatically determined.

• We show that our method (GSCEventMOD) allows
successful detection of moving objects in a scene.
Experimental results show that GSCEventMOD per-
forms better than previous state-of-the-art techniques
on a publicly available dataset [2]. We also demon-
strate the versatility of our method by testing it on a
synthetically generated dataset.

The rest of the paper is organized as follows: In Section
2 we briefly discuss the related works. In Section 3, we
describe our proposed method. The details of our ex-
periments and comparisons with the state-of-the-art are
presented in Section 4. Finally, in Section 5 we conclude
the paper with outlines for direction of future work.

2. Related Work

In this section, we briefly discuss the available tech-
niques for moving object detection in frame-based cam-
eras and see how they are extended to neuromorphic vi-
sion. Many classical approaches that are proposed for
moving object detection are based on the geometrical
understanding of the scene like in [23]. There are sev-
eral deep learning-based approaches too, like in [14, 42],
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Figure 2: An illustrative overview of the proposed GSCEventMOD. First, we sample the event space-time volume on
the basis of the timestamps of the corresponding grayscale images. Secondly, we construct a similarity graph using
k-NN. We also perform eigendecomposition on the Graph Laplacian and take the first k eigenvectors to get the moving
objects as clusters. We use silhouette analysis for determining the optimal value of k.

where they have used multi-layered convolutional neu-
ral networks for detecting moving objects. However,
using deep learning has its own disadvantages, for ex-
ample, the models are very complex and they require a
large amount of labeled data to avoid over-fitting. In-
deed, there are no general answers in the literature about
the sample complexity required in the deep learning reg-
imen [10].

Also during high-speed motion, traditional RGB
cameras suffer from high motion blur and perform badly
in challenging situations (like abrupt variation in ambi-
ent brightness, remote areas with power scarcity, etc.).
Here, event-based cameras [4, 8] can be useful [31].
This is because these neuromorphic sensors capture the
scene dynamics only (as the change in brightness occurs
only when there is motion in the scene) and detection of
the moving objects from the static background is done
by the sensor itself [29]. So, the task of moving object
detection may seem trivial if there is only one object in
a scene as all the generated events correspond to the mo-
tion of the object (ignoring noise). However, when there
are multiple moving objects in a scene, the task of de-
tecting them all becomes really difficult. This is because
unlike the frame-based cameras, neuromorphic vision
sensors capture only the binary changes in brightness,
which do not contain much visual information [29].

In 2012, Piątkowska et al. [29] have studied the pos-
sibility of using Gaussian Mixture Models (GMMs) [32]
for multiple persons tracking using event-based cam-

eras. However, a model using GMM is too sensitive to
noise, as it assumes that each data point (here the events)
is independent of its neighbors, thus ignoring the simi-
larity relations among those points [26]. In 2018, Chen
et al. [5] and Hinz et al. [12] have performed a prelimi-
nary multi-vehicle detection and tracking using classical
clustering approaches (like DBSCAN [17], MeanShift
[6], etc.). However, these methods also perform poorly
as they are sensitive to noise and require tuning of quite
a few parameters. [7]. Here graph spectral clustering
performs better, because it requires the tuning of a sin-
gle parameter (i.e. the number of clusters). In this work,
we show how the number of clusters can be determined
automatically using silhouette analysis.

3. Proposed Method

In our work, we use graph-spectral clustering [20, 21]
for the task of detecting moving objects in event-based
data. We show that the application of graph spec-
tral clustering can find meaningful clusters of arbitrary
shapes under realistic separations. The schematic of the
proposed unsupervised model, termed as, Graph Spec-
tral Clustering technique in Event data for Moving Ob-
ject Detection (GSCEventMOD) is shown in Fig. 2. A
sampling strategy is first employed for obtaining a small
set of events to facilitate computationally efficient pro-
cessing. The sampled events are then used to construct
a k-NN graph. Then we apply spectral clustering on the
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k-NN graph. The clusters represent the moving objects.

3.1. Sampling and Graph Construction

The events generated due to the moving objects are
treated as sparse point-cloud data in the 3-dimensional
space-time volume [4]. Let us consider there are M
event points and corresponding S grayscale images cap-
tured at uniform timestamps Ti (i ranging from 1 to S).
To generate meaningful samples, we divide the whole
space-time event volume into S partitions. Each of these
individual partitions consists of Pi events that occurred
before timestamp Ti. Thus,

∑S
i=1 Pi = M .

We adopt a uniform sampling strategy for obtaining
a small set of neuromorphic events. Let N events are
selected from each of these partitions. Each event-point
in N is represented as a tuple sequence:

  \label {tuple} \{e_i\}_N = \{x_i , y_i , t_i\}_N,       (1)

where {xi, yi} indicates the spatial address at which the
spike event had occurred, ti is the timestamp indicating
when the event was generated and N represents the total
number of events.

As the events are sparse in the spatio-temporal do-
main (image plane evolving in time), the underlying
graph is generally unstructured (as opposed to the graph
of pixels in an image, which is regular) [41]. To address
the irregularity, a graph is constructed with N events us-
ing the popular k-NN strategy [27]. The neighborhood
is based on the spatio-temporal similarity between the
event points in the point cloud. Let us define a graph
G = G(V,E), where V is the set of nodes or vertices
and E is the set of edges. Here we represent each event
ei = ei(xi, yi, ti) as a node vi in the graph (vi ∈ V ). We
connect vi and vj with an edge ϵij (ϵij ∈ E) if either vi
is among the k nearest neighbors of vj or vj is among
the k nearest neighbors of vi.

The value of k in k-NN has been chosen carefully. A
small value of k would make the result sensitive to noise
whereas a large value of k would make the process com-
putationally expensive. As there is no definite statisti-
cal method to find an optimal k and there is abundance
of noise in the event data (due to current limitations of
neuromorphic vision sensors [5]), we have experimen-
tally set its value for each sequence.

3.2. Graph Laplacian

Let A be the adjacency matrix of the graph G with
A = (aij)i,j=1,2,...,N , where the set of vertices is V =
v1, v2, ....., vN and A ∈ RN×N . Note that aij indicates
whether node vi is connected to the node vj . As G is un-
weighted and undirected, A ∈ {0, 1}N×N and aij = aji.

The degree of a vertex vi is given by di =
∑N

j=1 aij .
We construct the degree matrix D which is a diagonal
matrix with the degrees d1, d2, · · · , dN of the respective
vertices v1, v2, · · · , vN as the diagonal elements. With
the adjacency matrix A and the degree matrix D, the
graph Laplacian L is given by:

  \mathbf {L} = \mathbf {D} - \mathbf {A}. \label {eq: Laplacian}   (2)

Here, L is the unnormalized Laplacian matrix of the
graph G and L ∈ RN×N . The eigenvectors of L are
calculated next. Let L has N eigenvalues denoted by:
λ1 ≤ λ2 ≤ .... ≤ λN [39]. Further, let u1,u2, · · · ,uN

be the corresponding eigenvectors, which can be ob-
tained by solving the generalized eigenproblem Lui =
λiDui, where i = {1, 2, · · · , N}.

3.3. Graph Spectral Clustering

In this work, the moving objects are determined as
the connected components (clusters) in the graph. Let
us consider there are k (k ≤ N ) moving objects which
means there are k clusters. The clusters are obtained by
the spectral clustering algorithm following [35]:
• Let U be the matrix whose columns are the first k

eigenvectors u1,u2, · · · ,uk where U ∈ RN×k.
• For i = 1, · · · , N , let yi be the vector corresponding

to ith row of U.
• Now the vectors yi{i=1,··· ,N} are clustered using k-

means algorithm into k clusters C1, C2, · · · , Ck. Note
that yi ∈ Rk.

• This induces a set of clusters A1, A2, · · · , Ak on the
original data, in which ej is assigned to Ai if yj is
assigned to Ci [38].

3.4. Optimal Number of Clusters

Determining the optimal number of clusters in data
is a crucial task. Even though there are no foolproof
methods available for determining its value, there are
few widely used methods like the elbow method [37],
Rand Index [34], adjusted Rand Index [15] and silhou-
ette analysis [36]. In our work, we use the silhouette
analysis strategy to find the actual number of clusters in
the data, which, in our case, is the actual number of mov-
ing objects in a particular scene. With this strategy we
do not need to have any prior knowledge about the exact
number of clusters. A range of values for the number of
clusters is inputted instead and the optimal value of the
number of cluster is automatically determined.

Silhouette value measures the difference between the
within-cluster tightness and separation from the rest
[33]. It is defined for each sample point and is composed
of two scores:
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Algorithm 1: GSCEventMOD
Input: Sampled events in space-time (from the

user).
Output: Moving objects as clusters.

1 Construct a similarity graph from each event
sample by using k-NN.

2 Compute the adjacency matrix for the graph.
3 Compute the unnormalized Laplacian.
4 Compute the eigenvalues and eigenvectors.
5 for a range of values of k:

Take the first k eigenvectors and construct
another matrix taking those eigenvectors as
columns.
Take the first k rows from that newly formed
matrix.
Obtain the clusters.
Compare and Update the maximum Silhouette
Coefficient (SC) obtained so far.

6 Get the moving objects as clusters and their
corresponding labels for which SC is
maximum.

• a(i): The mean distance between a sample point i and
all other points in the same cluster.

• b(i): The mean distance between a sample point i and
all other points in all other clusters of which it is not a
member.

Now the silhouette value s(i) for that single sample is
given as:

  \label {silhouette} s(i) = \frac {b(i)-a(i)} {max(a(i),b(i))} , 



 (3)

Kauffman et al. [16] proposed the term Silhouette
Coefficient SC, which returns the maximum value of
the mean s(i) over all data points of a specific sequence.
SC is defined as:

  SC = \max _k \Tilde {s}(k),  


 (4)

where s̃(k) represents the mean s(i) over the entire data
of a specific sequence for a definite number of clusters k.
The value of SC is bounded in between −1 and 1, where
a score near to 1 shows greater intra-cluster tightness and
greater inter-cluster distance. A higher value means that
the clusters are dense and well separated, leading to a
meaningful representation of the clusters.

In our work, we use SC to determine the optimal
value of k. We take some values of k, ranging from 2
to 10 (by the knowledge from the ground truth about the
maximum number of moving objects) and plot their re-
spective SCs. From those plots, we take the value of k

Figure 3: Few outputs from our framework and their
corresponding Silhouette plots. Note how the maxima
in the two plots are correctly representing the number of
moving objects in the scenes (best viewed in color).

for which the magnitude of SC is maximum. This k is
the required optimal number of clusters. This is how we
get the actual number of moving objects in a scene. We
show some sample k vs SC plots from our work in Fig.
3. The whole methodology is summarized in Algorithm
1.

4. Experimental Results
In this section, we evaluate our proposed method.

First, we show the datasets used and metrics in Sec-
tions 4.1 and 4.2 respectively. In Section 4.2, we also
compare our method against the state-of-the-art base-
lines [29, 5, 12] and show how it is performing better
than theirs.

We experimentally set the value of nearest neighbors
at 30 for hands, 100 for cars and 25 for street sequences.
All the experiments were performed on a computer with
2 Intel® Xenon® CPUs, each with a clock frequency of
3.50 GHz.

4.1. Datasets

As the datasets used in the baseline methods [29, 5]
are not publicly available, we evaluate our algorithm on
the DistSurf1 [2] dataset, where the events are recorded
using the IniVation DAViS346 camera. This camera has
a 346 × 260 spatial resolution and outputs frames up to

1https://sites.google.com/a/udayton.edu/
issl/software/dataset
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Figure 4: Visual results for GSCEventMOD and other SOTA methods on the DistSurf [2] (marked with †) and the
synthetic dataset (marked with ∗). We show that our method performs significantly better than the other compared
methods (best viewed in color).

60 frames per second for RGB/ grayscale images and
in microsecond resolution for the events. This dataset
contains sequences (both events and their correspond-
ing grayscale images) captured in both indoor and out-

door environments, involving multiple moving objects
(cars, pedestrians, hands, etc.). Few sequences from this
dataset [2] are shown in Fig. 4 (hands and cars).

We further evaluate our method on a synthetic dataset
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Table 1: Evaluation metrics

Metrics Formula
True positive (TP) |E∩GT |

|E∪GT | ≥ 0.75

False positive (FP) |E∩GT |
|E∪GT | < 0.75

False negative (FN) No ground truth detected
Precision (P) TP

TP+FP

Recall TP
TP+FN

F measure 2×P×R
P+R

generated using the v2e framework2 [13]. Using [13],
we convert the grayscale frames from a video to realistic
events. The synthetic sequences are shown in Fig. 4
(street).

4.2. Evaluation Metrics and Comparisons

Multiple protocols are available for the detection of
moving objects in frame-based cameras. We can apply
many of them in event-based data too. As in [5], we
accumulate the events corresponding to their grayscale
frames in different time intervals. Now to decide how
well the detected objects (in event-data) are located with
respect to the ground truth (in frame-based data), we
perform a coverage test over the whole dataset [29] for
the correctly detected objects E (area of bounding box
around moving objects in event-data) and the ground
truth GT (area of bounding box around moving objects
in ground truth). As the Distsurf [2] dataset does not
have ground-truths for moving object detection, we have
labeled them manually. The metrics used are shown in
Table: 1.

Visual comparisons of our method with the state-of-
the-art approaches are shown in Fig. 4 and the quan-
titative comparisons are shown in Table: 2. From Fig.
4, we can see that the clusters represent the moving ob-
jects. However, we have noise surrounding those mov-
ing objects, which is generated mainly due to ambient
disturbances and sensor defects. Despite that noise, our
model could successfully detect the moving objects in
comparison to other state-of-the-art methods [29, 5, 12].
We can also see that at the time of occlusions, while the
other models fail to distinguish between the moving ob-
jects in the scene, our model is performing significantly
better. Note that as the number of moving objects in a
scene increases, the difference between the performance
of our model and the previous methods becomes more
prominent.

2https://sites.google.com/view/video2events/
home

Nevertheless, there are some failure cases. For ex-
ample, Fig. 5 shows few samples, where the moving
cars are so close to each other, that our model merges
them into a single cluster (Case 1). Also, we could see
that while a moving object is significantly larger than
the others, the model is breaking it into multiple clusters
(Case 2). However, even in such situations, our model
performs better than the other methods, as can be seen
from Fig. 5.

5. Conclusions
In this paper, we proposed a novel method, termed

as GSCEventMOD for event-based moving object de-
tection using graph spectral clustering. We demon-
strated that detecting moving objects using neuromor-
phic vision sensors can perform well in the challeng-
ing situations like fast motions and abrupt changes in
the lighting conditions. GSCEventMOD requires min-
imal pre-processing as scene dynamics is captured by
the sensor itself. GSCEventMOD is shown to outper-
form some of the previous approaches in event-based vi-
sion. We validated GSCEventMOD with synthetic data
and real-world data captured under varied environments
to demonstrate its flexibility. Overall, we believe our
method will be suitable for multiple computer vision
applications like autonomous vehicles, robotics, remote
surveillance, and others.

In future, we plan to incorporate suitable motion
models. Another direction of future research would be
to explore semi-supervised learning to improve the so-
lution.
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